Facility Name: Norda Inc
Location: 140 Route 10, East Hanover NJ
EPA Region: Region II
Person(s) in Charge of the Facility: NDEP - Bureau of
Enstronmental Evaluation
Cleany and Rasponih ty Assmit
Name of Reviewer: Bhet Poist Date: 8/18/89
General Description of the Facility:
(For example: landfill, surface impoundment, pile, container; types of hazardous substances; location of the facility; contamination route of major concern; types of information needed for rating; agency action, etc.)
Major area of concern is area where approximately
. 3500 drums of process waste were huried during
the 1960; The major route of concern for
the moterials buried is groundwater. An organis
ECRA insestigation remediation program
which has addressed most the source and contamination
of the site and is continuing at this time
Scores:
HRS SH = 46.90 (SH = 80.765 SW = 7.83 Sa = 0)
PRO SM = 54.75 (Sgw = 80.76 Sgw = 11.75 Sg = 48.10)

	Grou	nd Water Rot	ite Work Sheet	1			
Rating Factor		Assigned Val		Muiti- plier	HRS	Max. Score	PRO
1 Observed Release	()	45	1	45	45	45
If observed release	is given a score	of 45, proces	ed to line 4. ed to line 2.				
2 Route Characteristi Depth to Aquifer		0 1 2 3		2		6	
Concern Net Precipitation Permeability of the		0 1 2 3		1		3 3	
Unsaturated Zor Physical State	10	0 1 2 3		1		3	
	Total R	oute Charact	enstics Score			15	
Containment		0 1 2 3		1		3	
Waste Characterist Toxicity/Persiste Hazardous Waste Quantity	ence	0 3 6 9	Witrobenzene 12 13 18 4 5 19 7	1	15	18	Ġ
	Total V	Waste Charac	teristics Score		21	26	21
Ground Water U Distance to Nea Well/Population Served	rest	0 1 2 0 4 6 12 16 18 24 30 32	(3) 8 10 20 35 40	3	9 40	9 9 40	
		Total Targe	ts Score		49	- 	49
	multiply 1 x multiply 2 x	4 x 5 3 x 4	x 5		4630	57.33	
7 Divide line 6	by 57,330 and m	ultiply by 100		Sgw	, -	30.76	80.76

₹

		5ur	TACS WATER	Route Work Shi				
	Rating Factor		Assigned (Circle C		Multi- plier	HRS	Max. Score	PRO
	1 Observed Release	·	0	45	1	0	45	45
	if observed release i	s given a vai s given a vai	ue of 45, pro ue of 0, prod	ceed to line 2]. }		i	
	Route Characteristic: Facility Slope and Terrain		0 ① 2		1,	1	3	-
	1-yr. 24-hr. Rainfail Distance to Neares Water	st Surface	0 1 3		1 2	743	, 6 , 3	
٠.	Physical State	Total	0 1 2 Route Char	acteristics Scor	1	10	15	
	3 Containment		0 1 2	o	1	3	3	
	Waste Characteristic Toxicity/Persister Hazardous Waste Quantity	nce	0 3 6 0 1 2	9 12 (3) 18 3 4 5 (6) 7	8 1	15	18	15
•		Total	U Waste Cha	racteristics Sci	ore .	21	25	21
	5 Targets Surface Water Us Distance to a Se Environment		o (D	(3) 3 2 3	3 2	(y2	5	62
	Population Serve to Water Intake Downstream	d/Distance	12 16 24 30	6 8 10 18 20 32 35 40		0	40	Ö
			Total Ta	rgets Score		8	55	8
i		multiply 1 nultiply 2	x 4 x x 3 x 4	3 1 x 5		50	40 64.35	50 756
	7 Divide line 6 b			100	Ssw		1,83	71.7

ţ

.

AIR ROUTE WORK SHEET								:	
	Rating Factor	•	Assigned Va (Circle On		Multi- plier	HRS	Max. Score	PRO	
1	Observed Release	0		45	1	0	45	45	:
	Date and Location:								
	Sampling Protocol:								e n e viga
-		e S = 0. Enter o hen proceed to I						,	HARV-STAN - Prof Price
2	Waste Characteristi Reactivity and	cs (123		1		3	3	- - Alde Alde de Prince
	Incompatibility Toxicity Hazardous Waste Quantity		0 1 2 3	4 5 🚯 7 8	3	,	9 8	6	Althoris Careto
									e de la companya de l
		Total W	aste Charac	steristics Score			20	15	•
3	Targets Population: Within 4-Mile Radius Distance to Sensiti Environment	}@ v•	0 9 12 15 FD 24 27 30 0 ① 2 3		1 2		30 5 3	21	2
	Land Use	·			·				7. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
			Total Targe	ts Score			39	16875 48-10	26
1	Multiply 1 × 3	2 x 3					35,100	16875	1755
[3	Divide line 4 b	y 35,100 and mu	itiply by 10	0 S ₃		0	-	48-10	50.00

100-1 pm 2-1, e-m - p-1

Transferential port of

HRS	S	s ²
Groundwater Route Score (Sgw)	80.76	65 22,1B
Surface Water Route Score (Ssw)	7.83	61.31
Air Route Score (Sa)	0	/ O
$s_{gw}^2 + s_{sw}^2 + s_a^2$		6583.49
$\sqrt{s_{gw}^2 + s_{sw}^2 + s_a^2}$		81.14
$\sqrt{s_{gw}^2 + s_{sw}^2 + s_a^2} / 1.73 = s_M =$		46.9

worksheet for computing $s_{\mathbf{M}}$

PRO	s	s²
Groundwater Route Score (Sgw)	80.76	G522.18
Surface Water Route Score (S _{SW})	11.75	138.06
Air Route Score (Sa)	48.10	2313.61
$s_{gw}^2 + s_{sw}^2 + s_a^2$		8973.76
$\sqrt{s_{gw}^2 + s_{sw}^2 + s_a^2}$		94,73
$\sqrt{s_{gw}^2 + s_{sw}^2 + s_a^2} / 1.73 = s_M =$		54.75

Worksheet for computing $s_{\mathbf{M}}$

TABLE 1

ECRA SAMPLING PLAN

SAMPLE SUMMARY 1

ADRON, INC.

EAST HANOVER, NEW JERSEY

Sample Point Designation	Performing Analysis ²	Sample Description	Sample Location ³
Field Blank	ETC	Water Sample for Quality Assurance	Collected at Boring 108
SB 101S3	ETC	Soil Sample at Sump Bldg 25	Boring 101, 12-13 ft. below grade
SB 102S3	ETC	Soil Sample at Sump Bldg 22	Boring 102, 91-10 ft. below grade
SB 103S4	ETC	Soil Sample at Septic Tank Bldg 3	Boring 103, 6-8 ft. below grade
SB 104S4 .	ETC	Soil Sample at Sump Bldg 27	Boring 104, 9-9 tft. below grade
B104	ETC	Soil Sample for Septic Bldgs 23, 25 and 27	Boring 104, 18-20 ft. below grade
9-22	ETC	Soil Sample for Septic Bldgs D and B-1 and Vehicle Maintenance Bldg.	Boring 105, 42-44 ft. below grade
B106S9	ETC	Soil Sample for Septic	Boring 108, 16-18 ft. below grade
B 107-S19	ETC	Soil Sample for Septic Bldgs D and B-1	Boring 107, 36-38 ft. below grade
B 108-S5	ETC	Soil Sample from Fire Pond	Boring 108, 9-10 ft. below grade
DRC1	ETC	Soil Sample from Drum Cleaning Area	Drum Cleaning Area northeast of Bldg 22, 2 ft. below grade
SDUM	ETC	Soil Sample Below Southern End of Dumpster	Dumpster northwest of Bldg 22
NDUM	ETC	Soil Sample Below Northern End of the Dumpster	Dumpster northwest of Bldg 22
SCB	ETC	Soil/Sediment Sample from Catch Basin	Catch basin north of vehicle Vehicle Maintenance Bldg along western plant boundary
VM	ETC	Soil/Sediment Sample from Catch Basin at Vehicle Maintenance Bldg	Catch basin at southern end of Vehicle Maintenance Bldg.
исв	ETC	Soil/Sediment Sample from Catch Basin	Catch basin north of fence corner at northwest corner of plant
SLAWN	ETC	Soil Sample	Grassy area near southern entrance to plant.
RSTRM	ETC	Water Sample from Stream/Seep	Seep entering wooded area northwest of MW-5.

TABLE 1 (continued)

Sample Point Designation	Performing Analysis ²	Sample Description	Sample Location ³
Method Blank	Cr .	Method Blank	
Trip Blank	CL	Trip Blank	<u> </u>
Sample #2 /	CL	Soil Sample	Trench at Call #4, 3 ft. below grade, 1/2 ft. from drum deposit
Sample #4	CL	Soil Sample	Trench at Cell #4, 3 ft. below grade, 6 ft ft. from drum deposit
Sample #5	CL	Soil Sample	Trench at Cell #4, 3 ft. below grade at side of cell deposit
Sample #8	CL	Soil Sample	Trench at Cell #4, 3 ft. below grade, 1% ft. from drum deposit
Sample #9	CL	Soil Sample	Trench at Cell #4, 8 ft. below grade, 2 ft. from drum deposit
Sample #11	CL	Soil Sample	Trench at Cell #4, 5 ft. below grade, 2 ft. from drum deposit
Sample #13	CL	Soil Sample	Trench at Cell #1, 8 ft. below grade, 2 ft. from drum deposit
Sample #14	CL	Soil Sample	Trench at Cell #1, 8 ft. below grade, 10 ft. from drum deposit
Sample #16	CL	Soil Sample	Trench at Cell #1, 5 ft. below grade, 1/2 ft. from drum deposit
Sample #18	CL	Soil Sample	"Trench at Cell #1, 8 ft. below grade, 15 ft. from drum deposit
Sample #21	CL	Soil Sample	Trench at Cell #1, 3 ft. below grade, 12 ft. from drum deposit
Sample #22	CL	Soil Sample	Trench at Cell #1, 7 if ft. below grade, 1/2 ft. from drum deposit
Borrow Pit	CL	Soil Composite from 4 locations	Borrow Pit/Sand and Gravel Quarry

NOTES:

Summary of samples for which laboratory data has been received by 2/28/86.

^{2.} ETC=Environmental Testing & Certification, Edison, New Jersey CL= Century Laboratories, Inc., Thorofare, New Jersey

Refer to Figure 1 for location of samples analyzed by ETC and to Figures 5, 6 and 7 for location of samples analyzed by CL.

^{4.} See Tables 2 and 3 for results of chemical analysis.